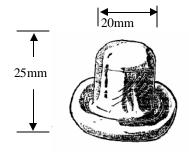


AM SERVICE TRAINING Featuring the AM-50BAE, AM-100BAE, AM-150BAF


AM-150BAF

www.hoshizakiamerica.com

AM-100BAE

The Hoshizaki AM series ice machine uses a horizontal evaporator design which forms a unique cube shape.

The compact AM-50BAE unit is 147/8"w x 22 5/8"d x 33 1/2"h and is designed for counter-top, under-counter, or freestanding installations with up to 51 pounds of production and 30 pounds of storage

The AM-100 and AM-150 are for under counter or free standing applications.

The AM-100 dimensions are 24 15/16"w x 20 1/2"d x 39"h with 6" legs and can produce up to 105 and pounds with 44 pounds of storage.

The AM150 measures 27 11/16"w x 27 15/16"d x 39"h with 6" legs and production up to 150 pounds with 88 pounds of storage.

A standard 120-volt power cord provides the electrical connection. The unit is designed to operate on a separate 15-amp circuit.

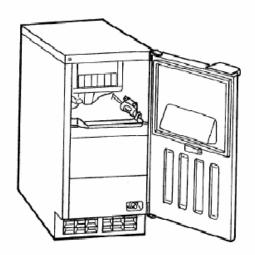
Inlet Water Line Connection

- 1st production units had a 3/4" BSP connection directly to the inlet water valve. (DO not connect with 3/4" FIP)
- Fitting (4A3207-01) and gasket 413854-01 were used from May through July production. (Through August on the AM-100BAE and AM-150 BAF)
- Fitting (4A3240-01) and gasket 413854-01 were added in August 03 on the AM-50BAE and September 03 on the AM-100BAE and AM-150BAF.

If no fitting is included, order either fitting /gasket above or use 3/4" hose type fitting to make this connection.

A minimum 3/8" water line is required for proper operation.

Drain line connection


The drain connection for the AM-50 was 5/8" I.D. hose until April of 2004 and was located on the left rear of the unit. A standard 3/4" male insert fitting can be used to connect this drain. From May 2004 the drain fitting is 1/2" FPT. A minimum 1/2" I.D. vented drain is required when making this connection.

The drain for the AM-100 and AM-150 is a 3/4" MPT.

Since the unit will likely be enclosed, it is recommended to use flexible, supply and drain connections. This will allow easy removal if service is necessary.

In the case of an AM-50 if a drain is not located in an area that will allow for the proper fall, there is an optional condensate pump available that can be installed directly into the unit. After removing the louvered rear panel the pump location is defined by the two metal tabs. This pump has a built in safety that will shut the AM-50 down in the event of a pump problem. This pump is available as an accessory through your local distributor. Simply follow the instructions included with the pump for details on the installation.

The AM-50 door can be field converted from the standard right hinged door to a left hinged door without the use of any additional hinge kits. The AM-100 and AM-150 use a spring loaded drop down door design therefore can not be reversed.

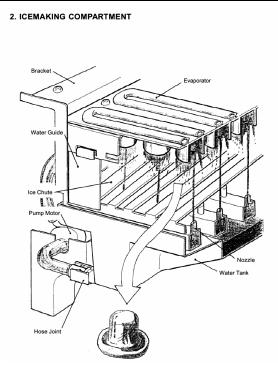
This procedure for reversing the AM-50 door is shown in the Instruction Manual provided with the unit. View this manual at www.hoshizaki.com.

(AM-100 & AM-150)

The horizontal evaporator and water distribution system are unique to the Hoshizaki AM and IM series. The AM and the IM series are similar in the fact that they both make ice on a horizontal evaporator. The AM evaporator design however is different, as shown in the center picture. The moving IM water plate and associated parts are eliminated with this simple design.

The AM-50BAE produces 24 cubes and .60 pounds per cycle. The AM-100BAE and AM-150BAF produce 60 cubes and 1.54 pounds per cycle.

The AM series sequence of operation is also different. The sequence of operation for the AM series will be explained in the following pages.



The AM series uses a combination thermistor and control board to control the sequence of operation. When the toggle switch is placed in the "ON" position and the bin control calls for ice, the unit will begin in the initial harvest cycle. Starting the unit in harvest allows the compressor to start in an unloaded condition, greatly extending the life of the compressor. This operation is common among all Hoshizaki cube icemakers.

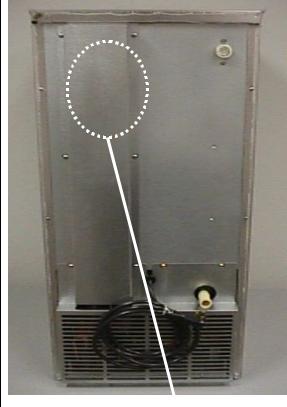
During the initial harvest, the compressor, hot gas valve and water valve will be energized. The initial harvest is a timed harvest. After 50 seconds, the control board will energize the X1 board relay to start the pump motor and condenser fan motor, switching the unit into the freeze cycle.

After the initial harvest, the X2 board relay will remain energized during the freeze cycle. This allows the water valve to feed fresh water for an additional 50 seconds. This extended fill, only takes place when the unit has restarted from a power interruption or when the bin control calls for ice. During the normal harvest cycle the water valve will de-energize at the beginning of freeze or in the event of long harvest the valve will have a maximum open time of 102 seconds. This could occur in the event of operation in low water and ambient temperatures. During normal operating conditions the unit will run approximately 2~4 minutes in the harvest cycle.

Note:

*A thermistor temperature of 26.6°F (-3°C) will start 8 minute freeze completion timer.

*A thermistor temperature of $44.6^{\circ}F$ (7°C) will start the 50 second defrost completion timer.


* $26.6^{\circ}F$ (-3°C) = $6.8K\Omega$ thermistor resistance.

* $44.6^{\circ}F$ (+7°C) = $4.5K\Omega$ thermistor resistance. Throughout the freeze which cycle, normally last 14~33 minutes, depending on model and operating conditions, the unit will continue to circulate the water from the reservoir to the horizontal evaporator, through the spray tubes. When the temperature of the evaporator has reached approximately 26.6°F (-3°C) and the thermistor signals approximately $6.8 \text{K}\Omega$ the freeze completion timer will start and count down 8 minutes.

The control board will then switch to normal harvest, re-energize the X2 relay and deenergize the X1 relay. This opens the hot gas valve and water valve and de-energizes the condenser fan motor and water pump. A normal harvest is temperature and time terminated and uses the same thermistor used to terminate the freeze cycle. After the evaporator warms to approximately 44.6°F $(+7^{\circ}C)$ the thermistor signals the control board with a resistance of approximately 4.5K Ω . The control board then starts the harvest completion timer, which is set at 50 seconds. When this timer completes 50 seconds, it ends the harvest cycle and begins freeze.

The unit will continue to cycle between freeze and harvest until the bin control opens, signaling a full bin or until power is interrupted

The AM series uses a thermostatic bin control located on the right rear side of the ice storage compartment. This control will open when ice touches the sensing bulb and the unit will shut down

This control includes a small heater to eliminate the control opening due to low ambient temperatures in the bin.

Access the control by removing the wiring channel from the rear of the unit.

The thermostatic bin control is factory set and should shut down the unit within 10 seconds after ice contacts the bulb. Adjustment may be necessary in higher altitudes.

(AM-100 & AM-150)

(AM-50BAE)

(AM-100 & AM-150)

AM-50BAE: The control switch is marked "ICE- OFF-WASH" and is located on the lower right front of the unit.

AM-100 & AM-150: The control switch is located on the control box which is located behind the front panel on the left hand side of the unit.

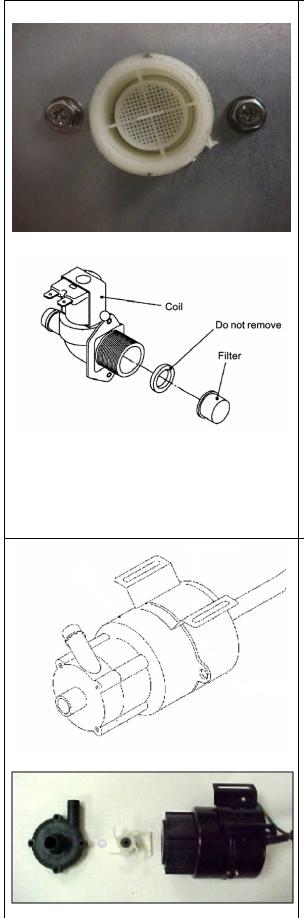
If it is necessary to gain access to the control box, the louvered panel must be removed. **AM-50BAE:** This can be done by removing the two screws from the lower portion of the front panel and pulling the panel down slightly to dis-engage the mounting tabs.

AM-100 & AM-150: Remove the middle screw at the bottom of the front panel and lift off.

The control box is held in place with 2 hex head bolts. Once the bolts are removed, **AM-50BAE:** The control box can be rotated approximately 45° CCW allowing easier access to the control box cover and control board.

AM-100 & AM-150: The control box can be pulled out to the front of the unit after the two bolts have been removed.

CONTROL BOARD:


A solid state board controls the AM operation. The control board is factory adjusted to produce consistent ice in all ambient conditions.

"NO SEASONAL ADJUSTMENTS ARE REQUIRED"

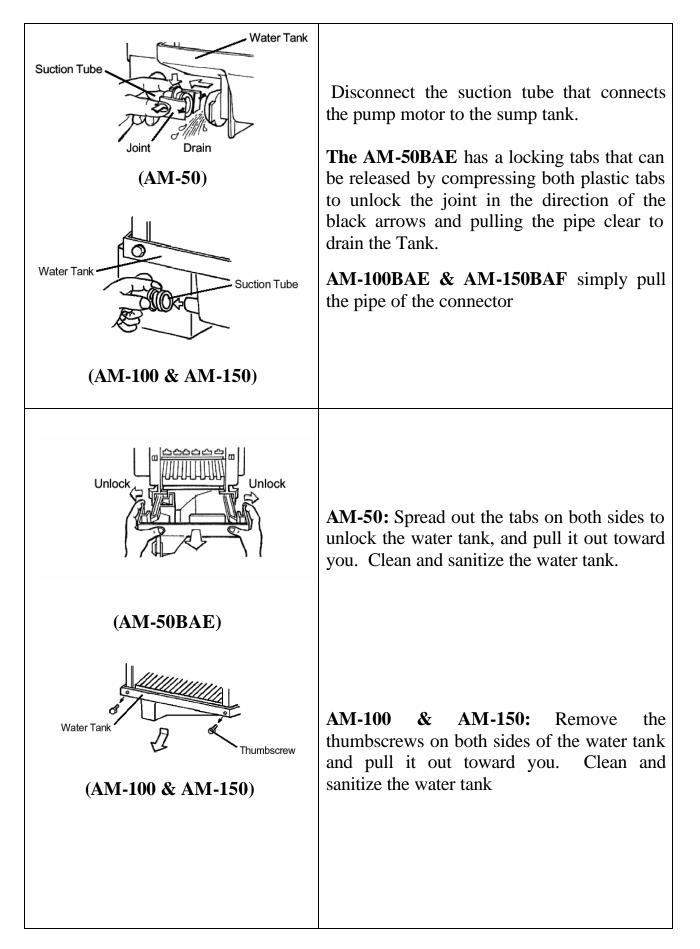
There are no adjustments needed, however there are two variable resistors on the control board. The first resistor VR1 is used to fine tune the harvest termination temperature adjustment when the control board is manufactured. The adjustment is sealed with red paint and should always remain in the factory setting.

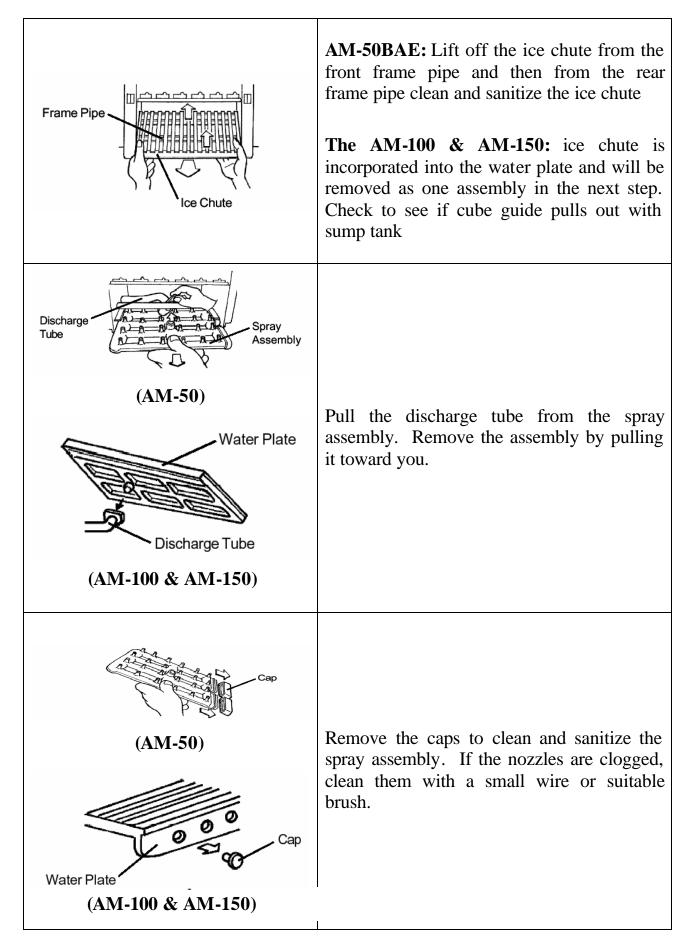
VR2 is set from the factory so that the ice machine will perform at the optimum level. This resistor adjusts the freeze cycle termination setting so the proper cube size is obtained. The VR2 setting is also sealed with red paint and should not be changed.

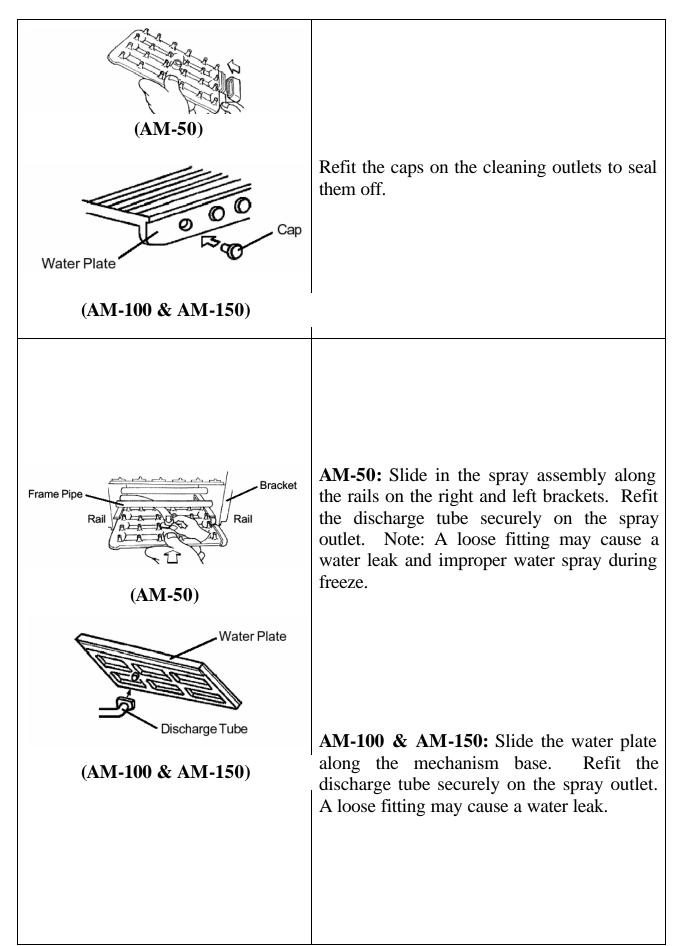
If you find that the red seal is broken, the board will need to be replaced since these settings cannot be correctly adjusted in the field. The replacement board will be factory set and sealed for proper operation.

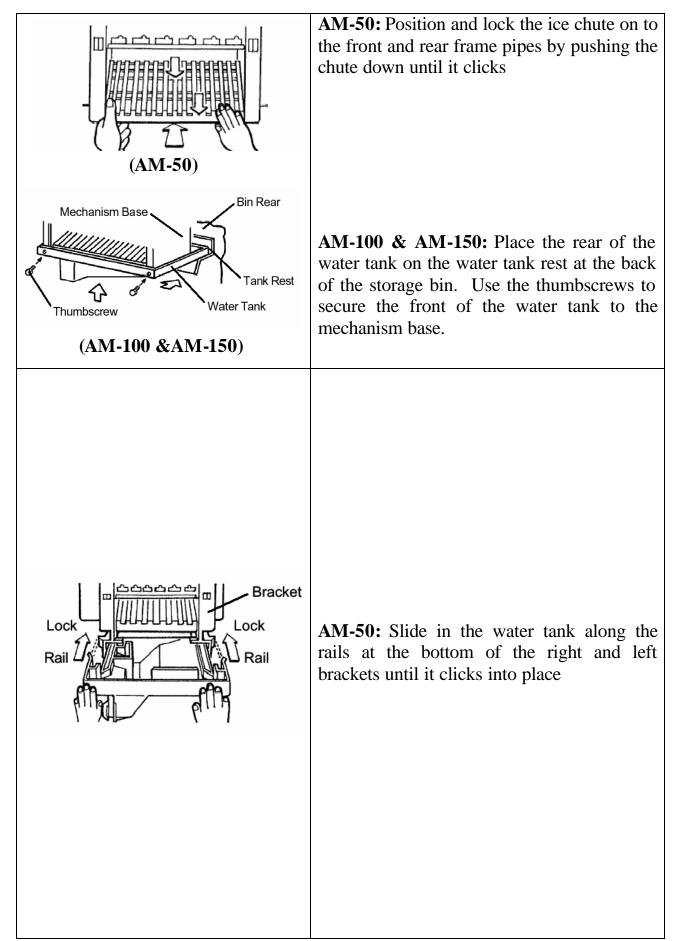
Preventative maintenance for the AM is simple. Follow these steps to allow the unit to operate efficiently.

- 1. Clean the condenser once a year using a brush or vacuum.
- 2. Check and clean the inlet water valve screen as needed to assure proper water flow.


*Remember that the original fitting is a 3/4" BSP and the use of a standard MPT fitting will damage the threads. In May of 2003, this fitting was changed to 3/8" male flare. After August and September of 2003, this fitting was changed to a 1/2" FPT.


- 3. Clean and sanitize the water distribution system annually using the recommended cleaner. (See the next page for detailed information on cleaning the water system)
- 4. Wipe down the exterior using a soft cloth and neutral cleaner.


The AM series uses a magnetic pump. This style of pump allows the water portion of the pump to be completely sealed from the motor. This eliminates the need for a mechanical seal and eliminates the possibility of water entering the pump through the pump end.


If the pump does not pump and is being energized then remove the four screws from the front of the pump and check for any debris that may be binding the impeller

<image/>	 Cleaning tips: A detailed cleaning label is located on the back of the icemaker door of the AM-50BAE or on the back of the bin baffle of the AM-100 & AM-150. More detailed instructions are included in the customers Instruction Manual or in the product Service Manual. This manuals can be viewed at www.hoshizaki.com Always follow the cleaning instructions and use the recommended ice machine cleaner.
Water circuit disassembly	The following instructions provide information on the disassembly of the water circuit. Before starting these steps it will be necessary to remove the hinged slope from the pins at the front edge of the bin.
Separator	Remove each Separator by lifting it to the horizontal position and pushing it hard inward. Remove all the separators the same way, clean and sanitize them

(AM-50)	AM-50BAE: Refit the suction tube on to the water tank inlet by pushing the joint to lock it securely in the arrow directions.
t. Water Tank GAM-100 & AM-150)	The AM-100 & AM-150 uses a simple push on suction hose. Note: A loose fitting may cause a water leak.
	Hook each separator on the rail and pull it hard toward you until it locks in place with a click. Refit all the separators in the same way.
	Refit the bin slope in its correct position

AM-50BAE

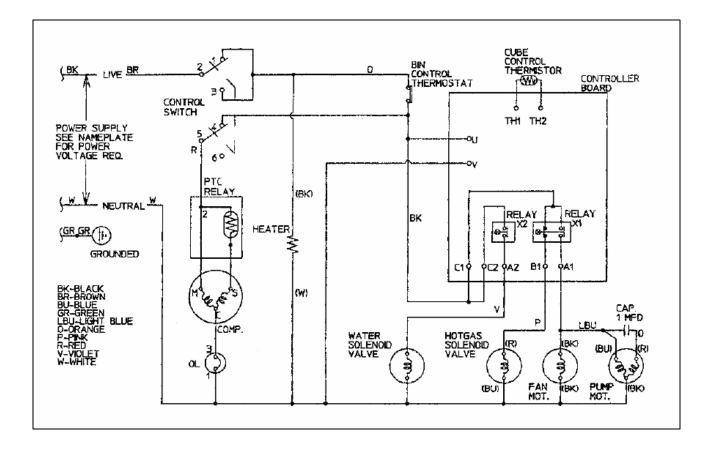
PERFORMANCE DATA

APPROXIMATE	Ambient	W	/ater Temp. (°	F)
ICE PRODUCTION	Temp. (°F)	50	70	90
PER 24 HR.	70	53 (24)	50 (23)	40 (18)
	80	49 (22)	44 (20)	38 (17)
	90	44 (20)	40 (18)	37 (17)
lbs./day (kg/day)	100	37 (17)	34 (16)	30 (14)
APPROXIMATE ELECTRIC	70	225	225	225
CONSUMPTION	80	225	230	240
	90	235	235	245
Watts	100	250	255	260
APPROXIMATE WATER	70	39 (0.15)	34 (0.13)	31 (0.12)
CONSUMPTION PER 24 HR.	80	31 (0.12)	29 (0.11)	29 (0.11)
	90	26 (0.10)	23 (0.09)	21 (0.08)
gal./day (m³/day)	100	21 (0.08)	18 (0.07)	16 (0.06)
FREEZING CYCLE TIME	70	16	18.5	19
	80	18	21	22
	90	22	24	26.5
min	100	25.5	28	33
HARVEST CYCLE TIME	70	2.4	2.4	2.3
	80	2.2	2.1	2.2
	90	2.0	2.0	2.1
min	100	1.8	1.8	1.8
HEAD PRESSURE	70	155 (10.7)	155 (10.7)	167 (11.5)
	80	178 (12.3)	185 (12.8)	191 (13.2)
	90	236 (16.3)	208 (14.4)	218 (15.0)
PSIG (kg/cm ² G)	100	237 (16.4)	241 (16.6)	254 (17.5)
SUCTION PRESSURE	70	22 (1.5)	23 (1.6)	25 (1.7)
	80	25 (1.7)	28 (1.9)	29 (2.0)
	90	28 (1.9)	29 (2.0)	32 (2.2)
PSIG (kg/cm ² G)	100	30 (2.2)	33 (2.3)	35 (2.4)
TOTAL HEAT OF REJECTION 1640 BTU/h (AT 90°F /WT 70°F)				

Note: The data without *marks should be used for reference.

AM-100BAE

APPROXIMATE	Ambient	W	ater Temp. (°	F)
ICE PRODUCTION	Temp. (°F)	50	70	90
PER 24 HR.	70	105 (48)	103 (47)	96 (44)
	80	96 (44)	93 (42)	86 (39)
	90	86 (39)	83 (38)	76 (35)
lbs./day (kg/day)	100	67 (31)	66 (30)	61 (28)
APPROXIMATE ELECTRIC	70	430	440	450
CONSUMPTION	80	460	470	480
	90	490	490	500
Watts	100	510	510	520
APPROXIMATE WATER	70	38 (0.15)	36 (0.14)	35 (0.14)
CONSUMPTION PER 24 HR.	80	36 (0.14)	35 (0.14)	33 (0.13)
	90	32 (0.13)	31 (0.12)	30 (0.12)
gal./day (m ³ /day)	100	28 (0.11)	27 (0.11)	26 (0.10)
FREEZING CYCLE TIME	70	17	18	19
	80	19	20	21
	90	22	23	24
min.	100	26.5	27.5	28.5
HARVEST CYCLE TIME	70	4	4	4
	80	3	3	3
	90	3	3	3
min.	100	2.5	2.5	2.5
HEAD PRESSURE	70	125 (0.86)	128 (0.88)	129 (0.89)
	80	155 (1.07)	156 (1.08)	158 (1.09)
	90	177 (1.22)	178 (1.23)	180 (1.24)
PSIG (kg/cm ² G)	100	216 (1.49)	217 (1.50)	220 (1.52)
SUCTION PRESSURE	70	16 (0.11)	17 (0.12)	20 (0.14)
	80	19 (0.13)	20 (0.14)	23 (0.16)
	90	20 (0.14)	22 (0.15)	25 (0.17)
PSIG (kg/cm ² G)	100	25 (0.17)	26 (0.18)	29 (0.20)
TOTAL HEAT OF REJECTION 2400 BTU/h (AT 90°F /WT 70°F)				

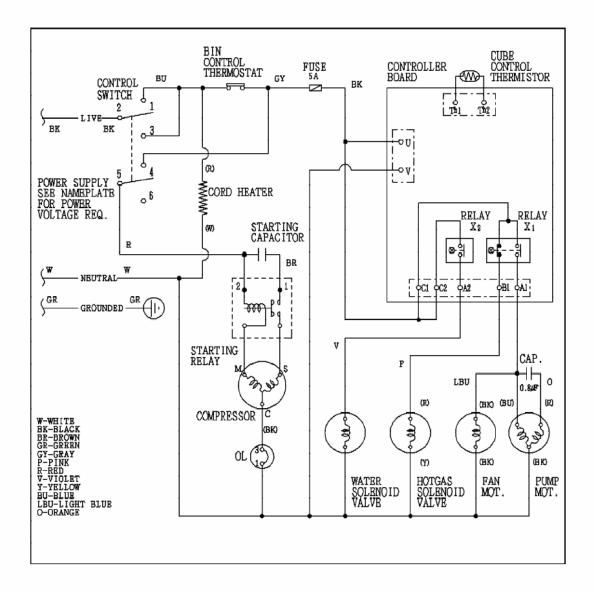

Note: The data without *marks should be used for reference.

AM-150BAF

APPROXIMATE	Ambient	W	ater Temp. (°	F)
ICE PRODUCTION	Temp. (°F)	50	70	90
PER 24 HR.	70	150 (68)	140 (64)	130 (59)
	80	140 (64)	130 (59)	120 (55)
	90	130 (59)	120 (55)	110 (50)
lbs./day (kg/day)	100	110 (51)	105 (48)	100 (45)
APPROXIMATE ELECTRIC	70	660	670	690
CONSUMPTION	80	670	690	710
	90	680	710	730
Watts	100	700	720	750
APPROXIMATE WATER	70	44 (0.17)	46 (0.16)	43 (0.15)
CONSUMPTION PER 24 HR.	80	43 (0.16)	43 (0.15)	36 (0.14)
	90	40 (0.15)	36 (0.14)	34 (0.13)
gal./day (m ³ /day)	100	36 (0.14)	34 (0.13)	30 (0.12)
FREEZING CYCLE TIME	70	14	15	16
	80	15.5	17.5	18
	90	17	18.5	19.5
min.	100	17.5	19	20
HARVEST CYCLE TIME	70	3.8	3.8	3.8
	80	3	3	3
	90	2.5	2.5	2.5
min.	100	2	2	2
HEAD PRESSURE	70	240 (1.65)	243 (1.67)	244 (1.68)
	80	269 (1.85)	270 (1.86)	273 (1.88)
	90	299 (2.06)	301 (2.07)	303 (2.08)
PSIG (kg/cm ² G)	100	339 (2.33)	340 (2.34)	342 (2.35)
SUCTION PRESSURE	70	75 (0.52)	78 (0.54)	80 (0.55)
	80	90 (0.62)	91 (0.63)	93 (0.64)
	90	108 (0.74)	109 (0.75)	111 (0.76)
PSIG (kg/cm ² G)	100	126 (0.87)	128 (0.88)	130 (0.89)
TOTAL HEAT OF REJECTION	2460 BT	<u>J/h (AT 90°F</u>	(WT 70°F)	

Note: The data without *marks should be used for reference.

AM-50BAE

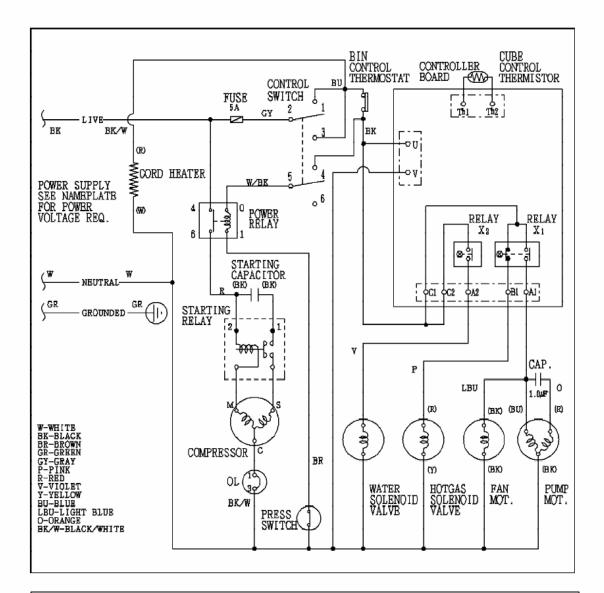


Electrical Specifications:

The unit is 115 volt/ 60 hz. /1ph.

The AM-Series should be connected to a separate 15Amp circuit.

AM-100BAE

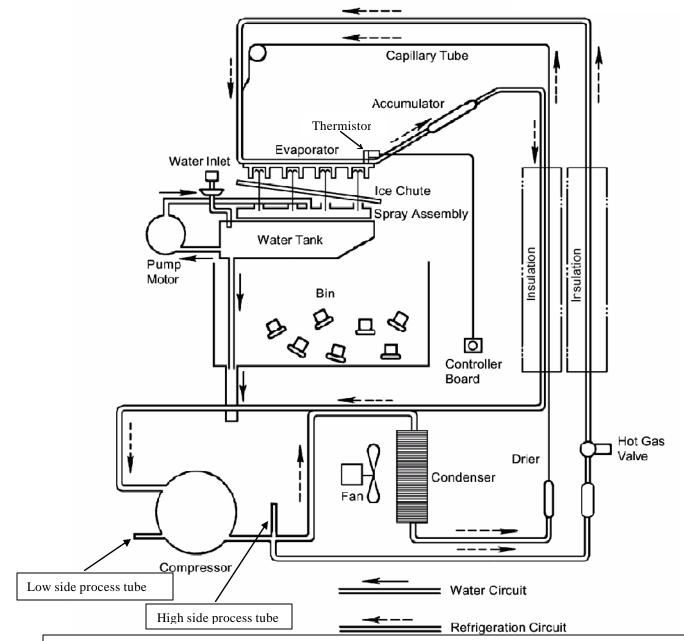


Electrical Specifications:

The unit is 115 volt/ 60 hz. /1ph.

The AM-Series should be connected to a separate 15Amp circuit.

AM-150BAF

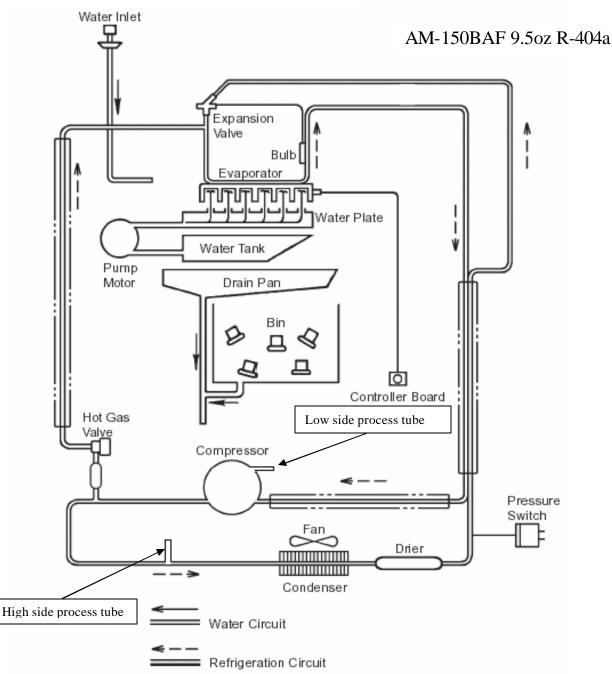

Electrical Specifications:

The unit is 115 volt/ 60 hz./1ph. The AM-Series should be connected to a separate 15Amp circuit.

WATER CIRCUIT AND REFRIGERANT CIRCUIT

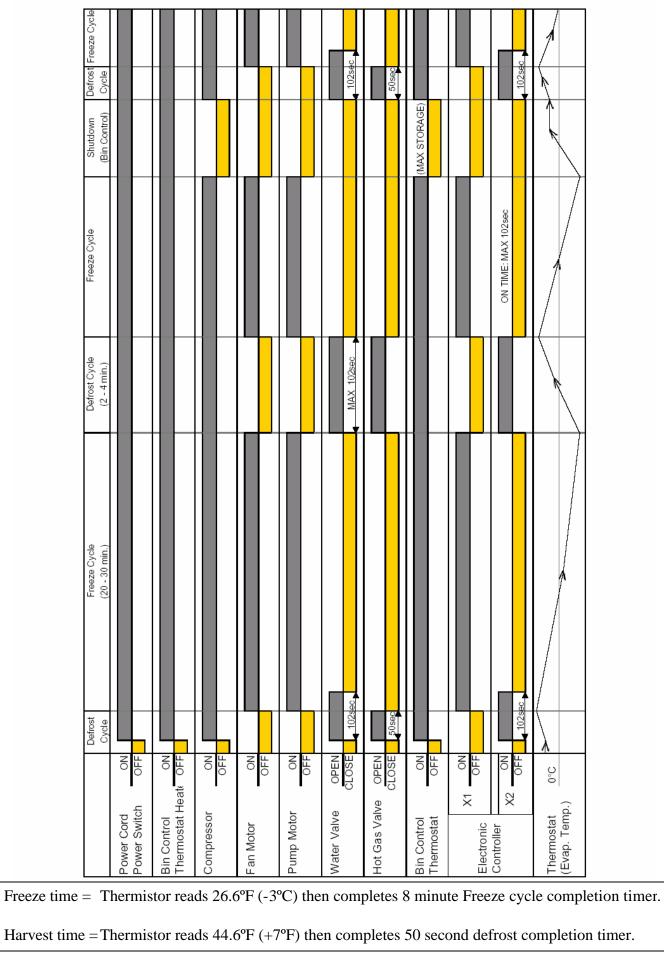
AM-50BAE R-134a 4.2 oz

AM-100BAE R-134a 6.6 oz



Note: All Hoshizaki ice machines are critically charged. Since the AM-series have small refrigeration circuits and the AM-100 and AM-150 use cap tube systems this is especially true. The AM-series does not come from the factory with any type of refrigeration system access. In the event that the system must be accessed for troubleshooting it will be necessary to install piercing type "saddle valve" on the system. These valves should only be installed on the process tubes provided on the low side and high side of the system. After the repair has been made to the unit, sweat type schraders should be installed in place of the piercing valves.

Again, these units are critical charged. Every precaution should be taken to insure that the exact charge of **R134a for the AM-50 and AM-100 and R-404a for the AM-150** is weighed into the system. Due to the very small charge of these units, extra care must be taken to avoid any refrigerant loss when removing gauges.


AM-150BAF

Note: All Hoshizaki ice machines are critically charged. Since the AM-series have small effigeration circuits this is especially true. The AM-series does not come from the factory with any type of refrigeration system access. In the event that the system must be accessed for troubleshooting it will be necessary to install piercing type "saddle valve" on the system. These valves should only be installed on the process tubes provided on the low side and high side of the system. After the repair has been made to the unit, sweat type schraders should be installed in place of the piercing valves.

Again, these units are critical charged. Every precaution should be taken to insure that the exact charge of **R134a for the AM-50 and AM-100 and R-404a for the AM-150** is weighed into the system. Due to the very small charge of these units, extra care must be taken to avoid any refrigerant loss when removing gauges.

4. TIMING CHART

SERVICE DIAGNOSIS

1. NO ICE PRODUCTION

PROBLEM	CHECK	POSSIBLE CAUSE	REMEDY
[1] The icemaker	a) Control Switch	1. OFF position.	1. Move to ON position.
will not start.	a, como como	2. Loose connections.	2. Tighten.
		3. Bad contacts.	 Check for continuity and replace.
	b) Power Cord	1. Loose connection.	1. Tighten.
	b) Fower Cold	2. Open circuit - damaged.	2. Repair or replace.
	c) Fuse	1. Blown out.	1. Replace.
	d) Bin Control	1. Tripped with Bin filled	1. Remove ice.
	Thermostat	with ice.	
		2. Out of position.	2. Place in position.
		3. Fused contacts.	 Check for continuity and replace.
	e) High Pressure Control (AM-150BAF)	1. Bad contacts.	1. Check for continuity and replace.
	f) Wiring to Controller Board	1. Loose connections or open.	 Check for continuity and repair or replace.
	g) Water Solenoid Valve	 Mesh filter or orifice gets clogged and water supply cycle does not finish. 	1. Clean.
		2. Coil winding opened.	2. Replace.
		3. Wiring to Water Valve.	 Check for loose connection or open, and replace.
	h) Controller Board	1. Defective.	1. Replace.
[2] Compressor will not start, or operates	a) High Pressure Control (AM-150BAF)	1. Refrigerant overcharged.	2. Recharge.
intermittently.	b) Overload Protector	1. Bad contacts.	 Check for continuity and replace.
		2. Voltage too low.	 Check for recommended voltage.
		 Refrigerant overcharged or undercharged. 	3. Recharge.
	c) Starter	1. Defective.	1. Replace.
	d) Start Capacitor	1. Defective.	1. Replace.
	e) Power Relay (AM-150BAF)	1. Bad contacts.	 Check for continuity and replace.
		2. Coil winding opened.	2. Replace
	f) Compressor	1. Wiring to Compressor.	 Check for loose connection or open, and repair or replace.
		2. Defective.	2. Replace.
	g) Air Filter, Condenser	1. Clogged.	1. Clean.
[3] Compressor runs, but other components will not start.	a) Control Circuit	1. Loose connection or broken wire.	1. Repair or replace.

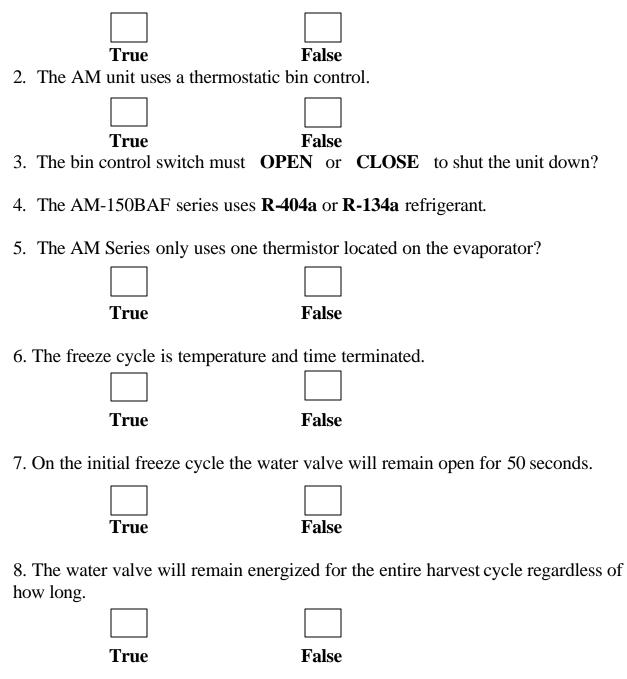
PROBLEM	CHECK	POSSIBLE CAUSE	REMEDY
[4] Fan Motor or Pump Motor	a) Wiring	1. Loose connection or broken wire.	1. Repair or replace.
will not run.	b) Controller Board	1. Defective.	1. Replace.
[5] Water continues to be	a) Water Solenoid Valve	1. Diaphragm does not close.	1. Check for water leaks with icemaker OFF.
supplied in freeze cycle.	b) Controller Board	1. Defective.	1. Replace.
[6] Water does not circulate.	a) Water Supply Line	 Water pressure too low and water level in Water Tank too low. 	1. Check for recommended pressure.
	b) Water Solenoid Valve	 Dirty mesh filter or orifice and water level in Water Tank too low. 	1. Clean.
	c) Water System	1. Water leaks.	 Check connections for water leaks, and repair.
		2. Clogged.	2. Clean.
	d) Pump Motor	1. Motor winding opened.	1. Replace.
		2. Bearing worn out.	2. Replace.
		3. Wiring to Pump Motor.	 Check for loose connection or open, and replace.
	e) Controller Board	1. Defective.	1. Replace.
	f) Discharge Tube	1. Clogged.	1. Clean.
		2. Out of position.	2. Place in position.
[7] All components run, but no ice	a) Refrigerant	1. Undercharged.	 Check for leaks and recharge.
is produced.		2. Air or moisture trapped.	 Replace Drier, and recharge.
	b) Compressor	1. Defective valve.	1. Replace Compressor.
	c) Hot Gas Solenoid Valve	 Continues to open in freeze cycle. 	1. Check and replace.
	d) Expansion Valve (AM-150BAF)	1. Continues to close in freeze cycle.	1. Check and replace.

2. LOW ICE PRODUCTION

PROBLEM	CHECK	POSSIBLE CAUSE	REMEDY
[1] Freeze cycle time is too long.	a) Water Supply	1. Low pressure.	 Check for recommended pressure.
	b) Water Temperature	1. Too high.	 Check for recommended water temperature.
	c) Water Quality	 High hardness or contains impurities. 	 Install a water filter or scale treatment.
		 Lime is deposited inside Cooling Water Tubing. 	2. Clean.
	d) Refrigerant Charge	 Overcharged or undercharged. 	 Recharge correctly and check for leaks.
	e) Refrigerant Circuit	1. Excessive moisture.	 Replace Drier and recharge correctly.
	f) Air Filter, Condenser	1. Clogged.	1. Clean.

3. ABNORMAL ICE

PROBLEM	CHECK	POSSIBLE CAUSE	REMEDY
[1] Large-hole cubes.	a) Water Supply Line	1. Low pressure.	1. Check for recommended pressure.
	b) Ambient or Water Temperature	1. Too high.	1. Check for recommended temperatures.
	c) Air Filter, Condenser	1. Clogged.	1. Clean.
	d) Water Valve	1. Clogged.	1. Clean.
	e) Pump Motor	1. Leaks.	1. Repair or replace.
		 Mechanical Seal worn out. 	2. Replace.
	f) Refrigerant Charge	1. Undercharged.	 Check for leaks and recharge correctly.
	g) Expansion Valve (AM-150BAF)	1. Poorly adjusted.	1. Readjust.
[2] Cloudy cubes.	a) Water Supply Line	1. Low pressure.	 Check for recommended pressure.
		2. Clogged.	2. Check Strainer and clean.
	b) Water Quality	 High hardness or contains impurities. 	 Install a water filter or scale treatment.
		2. Lime is deposited inside Cooling Water Tubing.	2. Clean.
	c) Water Valve	1. Clogged.	1. Clean.
	d) Water System	1. Scaled up.	1. Clean or remove scale.
	e) Water Plate	1. Jet hole clogged.	1. Clean.
	f) Pump Motor	1. Leaks.	1. Replace.
		2. Bearings worn out.	2. Replace.


4. OTHERS

PROBLEM	CHECK	POSSIBLE CAUSE	REMEDY
[1] Icemaker will not stop when	a) Bin Control Thermostat	1. Fused contacts.	 Check for continuity and replace.
Bin is filled with ice.	b) Controller Board	1. Defective.	1. Replace.
[2] Abnormal noise	a) Pump Motor	1. Bearing worn out.	1. Replace.
	b) Fan Motor	1. Bearings worn out.	1. Replace.
		2. Fan Blade deformed.	2. Replace Fan Blade.
		 Fan Blade does not move freely. 	3. Replace.
	c) Compressor	 Mounting pad out of position. 	1. Reinstall.
	d) Refrigerant Lines	 Rubbing or touching on other surfaces. 	1. Secure or reset pipes.
[3] Ice in Storage Bin often melts.	a) Bin Drain	1. Plugged.	1. Clean.

AM SERIES REVIEW QUIZ

Choose the best answer for each question below.

1. The AM control board is located in the rear or the unit.

9. The AM-50BAE makes a square cube.

True	False

NOTE: Quiz answers are at the bottom of next page.

Quiz answers:1.False,2. True,3. Open,4. R-404a,5. True,6. True,7. True,8. False,9. False

(NOTES)